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Abstract: The boiler soot blowing practices is the foundation for ensuring normal boiler operation 
and saving coal consumption. However, improper soot blowing strategies adopted by many power 
plants lead to decreased boiler efficiency and steam wastage. An effective ways to address this issue 
is to accurately monitor ash fouling and soot blowing in real-time. This paper investigates a 
comprehensive approach for monitoring ash fouling on the heating surface of boiler power plants and 
proposes an optimized soot blowing mechanism. Considering the time-series, variability, and 
complexity of the boiler heating surface data, an ensemble learning model is designed to monitor the 
cleanliness coefficient of the heating surface and thereby a boiler soot blowing optimization control 
strategy is proposed. This strategy combines the characteristics of steam sootblower in reality, using 
main steam flow rate as an environmental feedback variable, and designs a "virtual-real" dynamic 
reward mechanism. Experimental results demonstrate that the model can dynamically adjust control 
strategies based on real-time environmental feedback, ensuring higher net heat benefits and lower 
soot blowing costs. 

1. Introduction 
In most industrial processes, boilers play a crucial role in generating steam for power generation. 

In thermal power plants, boilers use a large amount of coal as fuel, and during the combustion process, 
the boiler's heating surface efficiently transfer the released heat energy to the steam. This generated 
steam is then used to drive turbines and produce electricity[1]. However, over prolonged operation, 
the boiler's heating surface may accumulate deposits of ash particles resulting from coal combustion, 
flue gas flow, and water circulation[2]. These deposits form sticky and glassy deposits on the boiler 
walls and heating surface. The continuous accumulation of these deposits increases the thermal 
resistance of the ash fouling, leading to a decline in heat transfer capacity and energy efficiency[3]. 

The sootblower is an effective and commonly used method to address the aforementioned issues. 
Sootblowing serves as a scheduled and quantified cleaning method that is widely applied in various 
industries[4]. However, the steam consumed during sootblowing is a part of the steam generation 
process, and frequent sootblowing requires more coal consumption for steam generation, resulting in 
increased economic costs and air pollution emissions. Moreover, conducting sootblowing in areas 
that are already clean may lead to pipeline corrosion and accelerate the degradation of pipeline 
surfaces, reducing their service life[5][6]. Therefore, the development of rational and scientific 
sootblowing optimization strategies to minimize scaling and reduce the overall costs of sootblowing 
operations has become an urgent problem in need of a solution[7]. 

The online monitoring of the boiler's various sections' fouling on the heating surface is an essential 
basis for formulating soot blowing strategies. Currently, there are two main approaches for predicting 
the state of boiler heating surface: mechanism-driven modeling and data-driven modeling. 
Mechanism-driven modeling methods primarily include the thermal equilibrium method. For instance, 
B. Peña et al. [8]developed  a real-time calculation heat model using expert systems to assess the 
fouling rate of the superheater. Ma Z. et al.[9] validated the location of heating surface fouling through 
CFD simulations and experimental data comparison, thus evaluating slagging and fouling conditions 
in coal-fired boilers. Bilirgen et al.[10] formulated slagging mitigation strategies by monitoring flue 
gas emissions and analyzing coal composition, boiler operating parameters, and the effects of soot 
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blowing behavior on the slagging formation process. 
In the data-driven modeling aspect, Kumari et al.[11] used a dynamic nonlinear regression model 

to monitor the reheater and determine the critical cleanliness factor and the duration of soot blowing 
cycles. Xu L. et al.[12] established a fouling detection model based on thermal loss analysis and GA-
BP neural networks. Shi Y et al.[13] proposed modeling a cleanliness factor to monitor the ash 
accumulation in the air preheater, aiming to obtain statistical fits of fouling status and assess 
optimized soot blowing strategies. 

Mechanism-driven modeling requires not only detailed information about the heating surface, 
layout diagram, and steam-water flow provided by power plant boilers but also the processing of 
thermal parameters, which involves complex measurements of parameters such as heat transfer 
coefficients. This can lead to a description of the heating surface health status that may deviate from 
the actual situation. The regression model based on neural networks has shown great potential in 
solving complex problems such as ash fouling detection and optimized control of soot blowing. Non-
linear models are commonly used to describe variables of the boiler heating surface, allowing 
information to be learned directly from data without relying on predefined equations. However, these 
individual models have some limitations when dealing with sudden changes in process conditions. 
Once the boiler operating environment undergoes sudden changes, the neural network requires some 
time to relearn and adapt to the new conditions. Moreover, using a single model is difficult to adapt 
to the complex and ever-changing boiler operating environment, resulting in limited predictive 
accuracy for industrial applications. 

Based on the aforementioned issues, this paper proposes an improved AD_Stacking ensemble 
algorithm combined with the cleanliness coefficient G to establish a prediction model for boiler 
fouling on the heating surface. Furthermore, by integrating real-time feedback from the environment, 
the deep reinforcement learning TD3 algorithm is utilized to optimize the control of the sootblower. 
The core advantage lies in the ability to integrate the strengths of multiple models, explore based on 
historical experience, adapt to changing environments, and use reward signals to guide the learning 
direction, achieving control over the duration and frequency of soot blowing. The main contributions 
of this paper are as follows:  

(1) Based on 44,640 continuous real-time data from a 600MW coal-fired boiler in Guangdong 
province, a boiler heating surface fouling prediction model was established. To address the issues of 
significant prediction errors of a single model under different operating conditions and the complexity 
of boiler heating surface data, we propose an improved AD_Stacking ensemble learning algorithm. 
This algorithm combines the Random Forest Regression (RFR), Gated Recurrent Unit (GRU), and 
LightGBM models to predict the cleanliness coefficient of the boiler heating surface, considering 
various operating conditions of the boiler heating surface. 

(2) Building upon the aforementioned contributions, this study further explored the optimization 
control method for the soot blowing process based on the deep reinforcement learning TD3 algorithm. 
Taking into account the specific operating environment of the soot blowing system and using the 
main steam flow rate as the environmental feedback variable, a model was developed to predict steam 
losses. Moreover, a novel "virtual-real" reward mechanism was designed with the aim of ensuring 
normal boiler operation while maximizing the cleanliness of the boiler heating surface and 
minimizing the cost of using the soot blowing system. 

(3) The established AD_Stacking ensemble algorithm is utilized as the parameter model for 
describing the boiler's heating surface fouling environment, combined with the real-time 
environmental feedback algorithm TD3 for optimal control of boiler soot blowing in power plants. 
Using R2 as the evaluation metric, experimental results show that within one soot blowing cycle, the 
model achieves an average accuracy of 95.7% in predicting the cleanliness coefficient and the steam 
loss by 99.5%. The reward value MSL increases by approximately 6% compared to the pre-optimized 
control, and the total steam consumption is reduced from 4.02t to 3.886t. These experimental results 
demonstrate the effective control of main steam flow and soot blowing steam cost while ensuring 
normal heat transfer efficiency of the boiler's heating surface. 
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2. Detection Of Ash Fouling Based On Ensemble Learning  
2.1 The Cleanliness Coefficient G 

During boiler operation, the heat absorption (Q) of the heating surfaces is closely related to the heat 
transfer efficiency, and its reduction directly reflects the degree of fouling and the decrease in heat 
transfer efficiency of the heating surfaces [14]. Therefore, the Q of the heating surfaces is used as a 
monitoring parameter. Meanwhile, the cleanliness coefficient (G) is introduced to quantify the degree 
of scaling on the heating surfaces, and its calculation equation is represented as Formula (1): 

G =
Qsj

Qclean
#                                                                          (1) 

Where Qsj represents the actual heat absorption on the convective heating surface during the real 
operation of the boiler, and 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents the heat absorption on the convective heating surface 
in the same operating state when it is clean. The numerical significance of the cleanliness coefficient 
G is the same as that of the cleanliness factor CF, both ranging from 0 to 1. 

The formula for calculating the actual heat absorption on the working fluid of the convective 
heating surface is as follows: 

𝑄𝑄𝑠𝑠𝑠𝑠 = (ℎ′′ − ℎ′)#                                                                 (2) 

Where ℎ′′ represents the enthalpy of the working fluid at the outlet of the heating surface, and 
ℎ′ represents the enthalpy of the fluid at the inlet of the heating surface. Modern power plants are 
typically equipped with comprehensive measurement points on the working fluid side, which allow 
for accurate calculation of the enthalpy values at the inlet and outlet of the heating surface. Based on 
equation (2), the actual heat absorption of the fluid, 𝑄𝑄𝑠𝑠𝑠𝑠, can be calculated. 

2.2 AD_Stacking 
During the operation of a boiler, the accumulation of ash on the heating surface causes changes in 

the heat transfer coefficient. As a result, the corresponding clean heat absorption Q_clean on the 
heating surface cannot be directly calculated through the heat transfer heat balance equation[15]. 
Therefore, considering the nonlinearity, temporal relationships among sample data, complexity, and 
dynamic variation of the boiler's heating surface, we adopt the Stacking ensemble learning 
algorithm[16]. The Stacking is an effective machine learning method that combines the predictions 
from multiple base models to obtain more accurate and stable predictions. 

When selecting the base models, it is important to consider their strengths and weaknesses and 
choose them based on the specific problem at hand. For power plant boiler operational data, it contains 
rich temporal features and exhibits complex cyclic variations. To better utilize the temporal nature of 
the data and improve prediction accuracy, we choose to incorporate the Gated Recurrent Unit (GRU) 
[17]neural network model. Additionally, to balance model interpretability and prediction accuracy, we 
employ the Random Forest (RF)[18] algorithm model. RF possesses excellent robustness, can handle 
various data types, and is effective in handling missing and outlier values while mitigating overfitting. 
Lastly, to consider the generalization ability in the complex boiler environment and ensure the 
stability of the overall model, we select the LightGBM algorithm[19], which has fast training speed 
and lower memory consumption, as a base model. For the meta-model, we use a linear model (RL)[20] 
that provides good interpretability and has a lower computational burden. 

In practical boiler fouling detection, the Stacking algorithm often faces challenges due to the 
complexity and dynamic variations of boiler heating surface. These challenges include: 

(1) The monitoring and data acquisition of boiler heating surface usually require expensive and 
complex instruments, and they often face challenges such as data missing or noise interference during 
actual operation. In order to fully utilize the data features and mitigate the scarcity of data, we 
employed a five-fold cross-validation method to train various base models. Through the 
comprehensive learning of the meta-model, the predictive performance of the model can be further 
improved. 
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(2) The performance of the Stacking algorithm often relies on the generalization ability of the base 
models. Due to the involvement of multiple factors in power plant boilers, such as temperature, 
pressure, flow rate, and combustion efficiency, there exist nonlinear and variable relationships among 
these factors. An effective approach is to use weighted averaging to manipulate the predictions of the 
base models, adjusting their weights based on their performance, so that the models with better 
performance have a greater influence. This enables the meta-model to update its parameters more 
effectively during the training process. At the same time, the boiler operation data exhibits temporal 
characteristics, so we employ the sliding window method. This method divides the time series dataset 
into multiple sliding windows, where each window contains a segment of time series data, with a 
portion used for training and the remaining portion used for testing. 

Based on the above discussion, the improved structure of the Stacking model is illustrated in Figure 
1. 
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Figure 1. The Framework Of The Improved AD_Stacking Algorithm 

3. Optimized Boiler Sootblower Optimization Control Model based on TD3 Algorithm 
3.1 The TD3 Optimization Control 

TD3 algorithm[21] is applied in optimization control tasks, and its learning process requires 
adjustments based on real-time feedback of the heating surface fouling status. For this purpose, the 
aforementioned AD_Stacking method is employed to construct a predictive model for the heating 
surface fouling status. The principle framework of the TD3 algorithm is shown in Figure 2. In the 
application scenario of the boiler soot blowing system in a power plant, the meaning of the experience 
data (s, a, s', r) is explained as follows: the environmental feedback variable s represents the 
descriptive parameter of the heating surface fouling status, which is the cleanliness coefficient G; the 
action space a represents the action performed by the soot blowing system, which is the blowing 
duration for the sootblower; the reward value r is designed as the main steam flow applied to power 
generation over a period of time; s' represents the next environmental feedback status after the action 
a is applied to the environment. 

 
Figure 2. TD3 algorithm process framework 
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3.2 Principle of Establishing the Environmental Feedback Model 
In the TD3 model, the feedback of environmental variable s plays a decisive role in the output of 

the reward mechanism[22]. However, the cleanliness coefficient itself cannot be directly used to design 
an appropriate reward mechanism. Considering the research subject is the steam sootblower, when 
the cleanliness coefficient of the heating surface area is low, it indicates severe ash accumulation, 
which reduces the heat transfer efficiency of the heating surface area, limits the evaporation of water 
inside the boiler, and consequently affects the magnitude of the main steam flow rate. Therefore, the 
main steam flow rate is closely related to the cleanliness coefficient of the heating surface area. To 
design a suitable reward mechanism, it is necessary to find the relationship between the cleanliness 
coefficient and the evaporation rate (D) and utilize parameters related to D in the design of the reward 
mechanism. 

In the boiler's superheater, the steam sootblower extracts a portion of the superheated steam 𝐷𝐷𝑐𝑐ℎ 
for the sootblower system, while the remaining steam is used to drive the turbine generator, known 
as the main steam flow rate (𝑀𝑀𝑀𝑀𝑀𝑀) of the unit. Other steam losses, such as moisture loss, heat transfer 
loss, and blowdown loss, are collectively referred to as the steam loss 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, due to the complexity 
of their measurement. The actual steam evaporation rate 𝐷𝐷𝑠𝑠𝑠𝑠  per unit time can be represented by 
formula (3): 

𝐷𝐷𝑠𝑠𝑠𝑠 = 𝐷𝐷𝑐𝑐ℎ + 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙#                                                          (3) 

Where 𝐷𝐷𝑠𝑠𝑠𝑠 , 𝐷𝐷𝑐𝑐ℎ, and 𝑀𝑀𝑀𝑀𝑀𝑀 represent the steam generation/consumption rate per unit time, which 
can be directly or indirectly obtained from power plant data. When the boiler is in a stable operating 
state with little load variation, the actual steam evaporation rate of the power plant boiler, D_sj, 
fluctuates around its rated evaporation rate, which is 1836 t/h. Based on the power plant data recorded, 
the 𝑀𝑀𝑀𝑀𝑀𝑀 shows fluctuations between two sootblowing cycles, as illustrated in Figure 3. 

 
Figure 3. Change chart of main steam flow rate per unit time 

From the above figure, it can be observed that the unit-time main steam flow rate of the unit varies 
with the change in the soot deposition status on the heating surface. However, in the optimization 
control process, the duration of sootblowing is not fixed. This implies that different values of 𝐷𝐷𝑐𝑐ℎ 
and 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 will result in different 𝑀𝑀𝑀𝑀𝑀𝑀 values. In order to obtain a reward feedback that aligns with 
the description parameter of the soot deposition status on the heating surface, the 𝑀𝑀𝑀𝑀𝑀𝑀 needs to be 
dynamically calculated. Since it is difficult to directly represent the boiler parameter variables 
associated with 𝑀𝑀𝑀𝑀𝑀𝑀, 𝐷𝐷𝑐𝑐ℎ and 𝐷𝐷𝑠𝑠𝑠𝑠  can be calculated using mechanistic formulas. Among them, 
the steam loss 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is mainly related to the boiler's heat loss, cleanliness coefficient, and boiler load. 
The heat loss can be expressed by parameters such as the outlet flue gas temperature of the boiler's 
air preheater and the exhaust gas temperature, which can be substituted in the expression. Therefore, 
in conclusion, the AD_Stacking algorithm model can be employed to model and output 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and 
the expression of 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 after feature selection is as follows (4): 

𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓(𝐺𝐺,𝑀𝑀𝑀𝑀𝑀𝑀,𝑄𝑄𝑄𝑄,𝑀𝑀𝑀𝑀𝑀𝑀,𝐾𝐾,𝑌𝑌)#                    (4) 
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Where G is the cleanliness coefficient, MST is the main steam temperature, QO is the total 
feedwater flow, MSP is the main steam pressure, K is the air preheater A side inlet flue gas 
temperature and Y is the flue gas flow rate. 

Then, combining equations (3) and (4), the 𝑀𝑀𝑀𝑀𝑀𝑀 is dynamically calculated during the operation 
of the TD3 optimization control model. It is used as a relevant variable in the reward calculation of 
the TD3 model, represented as 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓(𝑀𝑀𝑀𝑀𝑀𝑀). The process of dynamically calculating 𝑀𝑀𝑀𝑀𝑀𝑀 
in the environmental model is shown in Figure 4. 
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Figure 4. Schematic diagram of the reward mechanism system process 

3.3 Reward Mechanism Design 
In the steam sootblower optimization control model based on TD3 algorithm, in addition to 

obtaining feedback from the environment, it is necessary to understand the benefits or rewards 
generated by the sootblowing actions. The total steam produced by the boiler is represented by the 
actual evaporation amount 𝐷𝐷𝑠𝑠𝑠𝑠 . The operation of the sootblower extracts a portion of the steam 𝐷𝐷𝑐𝑐ℎ, 
and there is also a certain steam loss consumption represented by 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. The remaining steam is used 
as the main steam flow rate 𝑀𝑀𝑀𝑀𝑀𝑀 for boiler power generation. In the scenario where steam losses 
cannot be controlled, it is desired to maximize the utilization of steam for turbine power generation, 
specifically to maximize the main steam flow rate (𝑀𝑀𝑀𝑀𝑀𝑀). Based on these considerations, a "virtual-
reality" reward mechanism is designed, and the objective reward is denoted as 𝛸𝛸𝑟𝑟 . as shown in 
equation (5). 

𝛸𝛸𝑟𝑟 = 𝜔𝜔(𝛸𝛸𝑎𝑎 − 𝛸𝛸𝑎𝑎′)#                                                                     (5) 

Where 𝛸𝛸𝑎𝑎 represents the main steam flow (𝑀𝑀𝑀𝑀𝑀𝑀) after a certain period of time under the current 
action (assuming it is the blowing action); 𝛸𝛸𝑎𝑎′ represents the 𝑀𝑀𝑀𝑀𝑀𝑀 after a certain period of time 
under the opposite action (not blowing); 𝛸𝛸𝑟𝑟 represents the difference between the two as the reward 
value; 𝜔𝜔 is the correction parameter. 
𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀 represents the cumulative amount of steam, which can be calculated by accumulating the 

unit-time main steam flow. The specific calculation formula is shown in equation (6). 

𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀 = � (𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖+1) / 2
𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖=𝑝𝑝𝑝𝑝𝑝𝑝

#                                                   (6) 

The clean coefficient G of the heating surface is used as input to the TD3 algorithm, which 
determines the soot blowing action. If the action value is greater than 0, it represents the duration of 
soot blowing, followed by a 10-minute cleaning phase. The total amount of 𝑀𝑀𝑀𝑀𝑀𝑀 (𝛸𝛸𝑎𝑎) is calculated 
based on this. If the action value is negative, it indicates soot accumulation time, and the total 𝑀𝑀𝑀𝑀𝑀𝑀 
(𝛸𝛸𝑎𝑎′) is calculated similarly. The final reward value 𝛸𝛸𝑟𝑟 is derived by subtracting the two MSL values, 
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with negative values indicating penalties and positive values representing rewards. 
When G approaches 1, light soot coverage calls for minimal soot blowing to avoid negative 

rewards. 
When G approaches 0, severe soot accumulation requires appropriate soot blowing to achieve 

positive rewards, while excessive or insufficient blowing can lead to negative rewards. 
This reward mechanism and its processes are illustrated in Figure 5. 

 
Figure 5. Schematic diagram of reward mechanism 

4. Experimental results and analysis 
4.1 Experimental datasets 

This study validated the prediction and optimization control models using data from a 600MW 
coal-fired boiler. The focus was on modeling and predicting soot accumulation on the convective 
heating surface, with the economizer as an example for optimizing air preheater, economizer, 
superheater, and reheater sootblower control. 

A dataset with 101 feature dimensions was collected from the actual boiler operation database, 
including heating surface impact and sootblower parameters. The Particle Swarm Optimization 
(PSO)-based Wrapper method[23] selected 10 key variables for predicting heat absorption, such as 
total coal quantity (M), total air flow (A), feedwater flow (QO), steam pressure (MSP), and flue gas 
flow rate (Y). 

Data sampling occurred every 5 minutes, yielding 13,000 samples from July 1 to July 31, 2022, 
with a 60-second collection interval during normal operation. In total, 44,640 samples were obtained 
for model training. 

4.2 Establishment and Prediction of the Heating Surface Fouling Status 
Firstly, the prediction model utilizes the AD_Stacking algorithm to model each heating surface. 

The features related to the air preheater, economizer, superheater, and reheater are used as input 
variables for predicting the cleanliness of the heating surface. By inputting these variables into the 
cleanliness coefficient prediction model, the predicted total heat absorption, Qclean, can be obtained. 
Then, combining with formulas (1) and (2), the cleanliness coefficient, G, for each heating surface 
can be calculated. The results are evaluated using the R2 score, as shown in the Figure 6. 

According to the analysis of the modeling and prediction results of the four heating surface from 
Figure 6, it was found that the average accuracy of the prediction based on the AD_Stacking algorithm 
reached 0.979 for the economizer and air preheater. However, for the reheater and superheater, the 
average accuracy of the prediction results was 0.935, relatively lower with a decrease in accuracy of 
4.4%. This difference can be attributed to various factors, such as the structural form of the heating 
surface, flue gas temperature and flow conditions, and ash deposition characteristics. 
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Figure 6. Schematic representation of the predicted cleanliness coefficients for each heating surface 
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Specifically, the characteristics and operating conditions of different heating surface can lead to 
differences in the accuracy of the model predictions. Economizers and air preheaters typically have 
relatively simple structures and a relatively single heat transfer mode, resulting in a more stable ash 
deposition status on their heating surface. Therefore, prediction results based on the AD_Stacking 
algorithm can achieve high accuracy for these surfaces. However, reheaters and superheaters have 
complex and variable ash deposition statuses on their heating surface. They are often subjected to the 
impact of high-temperature flue gas and high-speed flow, which leads to a complex heat transfer 
process with variable heat transfer modes. As a result, the prediction accuracy for these surfaces is 
relatively lower compared to the lower-temperature heating surface. 

Overall, the high prediction accuracy of the boiler heating surface model established based on the 
AD_Stacking algorithm demonstrates its reliability. 

4.3 Establishment and Prediction of Steam Loss Model 
Based on the establishment and discussion results of the environmental feedback model in Section 

3.2, in order to obtain the main steam flow rate related to the reward value, it is necessary to model 
the steam loss. Different values of 𝐷𝐷𝑐𝑐ℎ and 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 will result in different main steam flow rates. 
Therefore, a mechanistic analysis was conducted on the data from two consecutive soot blowing 
cycles, including 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐷𝐷𝑐𝑐ℎ, 𝑀𝑀𝑀𝑀𝑀𝑀, and 𝐷𝐷𝑠𝑠𝑠𝑠 , which were randomly selected, as shown in Figure 7. 

 
Figure 7. Schematic diagram of steam flow per unit time related parameters 

From Figure 7, we can observe the fluctuation of the data. As mentioned earlier, the actual steam 
evaporation rate of the boiler, 𝐷𝐷𝑠𝑠𝑠𝑠, fluctuates around its rated evaporation rate. On the other hand, 
the steam consumption rate for soot blowing varies periodically due to the adopted periodic blowing 
mode. It can be seen that the main steam flow rate, 𝑀𝑀𝑀𝑀𝑀𝑀, shows a significant peak from around the 
450th time sample to the 510th time sample, indicating the occurrence of blowing and the cleaning 
state of the heating surface. Based on the characteristics of periodic blowing, it is not difficult to 
observe that the steam loss rate and the main steam flow rate exhibit a negative correlation trend. This 
explains the phenomenon of the two showing an inverse relationship while the evaporation rate 
remains constant. 

Therefore, in the actual optimization control process, it is possible to calculate 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 by obtaining 
real-time dynamic values, and use it to calculate 𝑀𝑀𝑀𝑀𝑀𝑀 , thereby obtaining the feedback reward 
variable s for the TD3 model. Then, the 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 prediction model is constructed by combining the 
AD_Stacking algorithm model. The dynamic acquisition of parameters is achieved, and the predicted 
results are shown in Figure 8. 
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Figure 8. Comparison of the steam loss prediction results 

The prediction model was evaluated using the R2 score, and the final prediction result achieved a 
score of 0.995. As shown in Figure 8, the 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  prediction model based on the AD_Stacking 
algorithm exhibits a high level of fit, indicating a significant predictive performance. 

4.4 Modeling and Experimental Optimization Control of Sootblower 
Based on the cleanliness coefficient and reward values, the TD3 algorithm is utilized to 

dynamically control the soot blowing process in the power plant's boiler. The experimental dataset is 
divided into a training set and a testing set in an 8:2 ratio. Each training cycle consists of 200 training 
steps. The reward threshold is set to stop the episode if the reward falls below -150 or every 50 rounds. 
The testing results of the optimized control are presented in Figure 9-10. 

 
Figure 9. Change of reward values 

 
Figure 10. Comparison diagram of MSL optimization control before and after 

Figures 9 and 10 show that after approximately 200 iterations, the reward value starts to increase 
and gradually reaches a stable state. The main steam flow rate generated by the unit after optimization 
control is significantly higher than before optimization. This indicates that based on the predefined 
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reward mechanism, the model can effectively ensure the supply of the main steam flow rate in the 
power generation process of the boiler. It can also make appropriate soot blowing action choices 
based on environmental feedback and previous experience. 

 
Figure 11. Comparison diagram of heating surface before and after grey optimization control 

 
Figure 12. Comparison of accumulated steam consumption before and after optimization control of 

sootblower 
Table 1 The MSL and total steam consumption before and after optimization 

Comparing Parameters Before Optimization After Optimization 
The Total Steam Consumption (t)  4.02 3.886 
MSL (t)  11640.115849 12353.97544 

Based on Figure 11 and 12, the reward values of the optimization control algorithm stabilize within 
a single random test cycle (650 time samples). Under stable rewards, the model dynamically adjusts 
its control strategy based on real-time feedback to maintain a cleanliness coefficient between 0.7 and 
0.9. When it drops to 0.5, the model initiates soot blowing to keep the surface cleaner than before 
optimization. Conversely, when the coefficient approaches 0.9, it minimizes or shortens soot blowing 
to prevent excessive wear on equipment. 

As shown in Table 1, optimization control increased the main steam flow rate (MSL) by 713.86 
tons (about 6%), while total steam consumption decreased from 4.02t to 3.886t. This improvement 
enhances boiler energy efficiency, reduces coal consumption, and conserves energy resources. 

5. Conclusions 
This paper presents an optimization model for soot blowing heat transfer based on the TD3 

reinforcement learning algorithm, aiming to improve the economic efficiency of coal-fired power 
plant boilers by balancing the clean heat absorption and the steam loss caused by soot blowing. Firstly, 
model for predicting the heat absorption of the boiler's clean heating surface is successfully 
established using an improved AD_Stacking algorithm. Then, considering the characteristics of steam 
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sootblower, a reward mechanism is designed for the optimization control model. Finally, through the 
establishment of the steam loss model and experiments on the final soot blowing optimization model, 
the effectiveness of the optimization control model is demonstrated. The model can achieve a 
maximum supply of main steam flow while ensuring normal power generation of the boiler, and it 
aims to control soot blowing damage and costs as much as possible. 
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