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Abstract: This paper presents a comprehensive strategy for optimizing crop planting decisions 
based on Integer Linear Programming (ILP) models and Monte Carlo Simulation (MCS) algorithms. 
The study begins with data preprocessing, which involves calculating the average selling prices of 
various crops and determining the expected sales volumes using characteristic equations. 
Considering land-type constraints, crop rotation requirements, and planting dispersion constraints, 
an ILP model is formulated to maximize farming profits over the period from 2024 to 2030. To 
address the uncertainties associated with input parameters, a dynamic stochastic agricultural 
planning model is developed. This model employs state variables to capture the dynamic changes in 
prices, yields, costs, and market demands. By integrating dynamic programming with MCS, 
multiple iterations are conducted to handle these uncertainties. The results are visualized through 
heatmaps, depicting the dynamic trends of planting acreage and profits for different crops. 

1. Introduction 
Agricultural planning is a complex task that requires precise management of resources to 

maximize profits while adhering to various constraints. Traditional approaches often overlook the 
dynamic nature of market demands, weather conditions, and crop characteristics, leading to 
suboptimal planting strategies. In this paper, we propose a sophisticated methodology that leverages 
advanced mathematical programming and simulation techniques to address these challenges. 

The research conducted by Mahmood Fazlali and colleagues [1] explored the challenge of load 
balancing in parallel branch-and-bound (B&B) algorithms, specifically focusing on subtree 
parallelism. These algorithms exhibited effectiveness in resolving MILP models stemming from 
behavioral synthesis. In another study, Ameni Kraiem et al. [2] formulated a mixed-integer linear 
programming model aimed at minimizing overall travel time and applied it to an instance of 
Cordeau's multi-vehicle lot vehicle routing problem to validate a newly created scenario. Gustavo A. 
Cardona et al. [3] introduced an efficient control synthesis based on optimization for Signal Timing 
Logic (STL) and its extension, known as weighted Signal Timing Logic (wSTL). While STL 
encompasses Boolean and temporal operators, wSTL further empowers users to articulate 
preferences and priorities for concurrent and sequential tasks through the weighting of logical and 
temporal operators, along with fulfilling time representations. Shiyuan Yang and team [4] presented 
an enhanced generalized augmented simulation (ES) scaling formulation, which integrates soft 
Monte Carlo simulation with a generalized ES scaling formulation and an SVR model to assess 
failure probability. Mohammad Firouz and colleagues [5], utilizing a sliced tree representation, a 
hybrid genetic algorithm, and a simulation-based evaluation framework, devised a method that 
efficiently balances material handling efficiency and rescheduling costs, ensuring resilient layouts 
in stochastic scenarios. 

The first step in our approach involves rigorous data preprocessing. By calculating the average 
selling prices of crops and utilizing characteristic equations to estimate expected sales volumes, we 
establish a solid foundation for subsequent modeling. Next, we formulate an Integer Linear 
Programming (ILP) model, which is well-suited for optimization problems involving discrete 
decision variables and linear constraints. In this context, the ILP model incorporates multiple 

2025 11th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2025) 

Copyright © (2025) Francis Academic Press, UK DOI: 10.25236/icmmct.2025.01281



constraints, such as land-type suitability, crop rotation requirements, and planting dispersion, to 
ensure that the resulting planting strategy is both feasible and profitable. 

However, agricultural planning is inherently uncertain due to fluctuations in market prices, 
weather patterns, and crop yields. To address these uncertainties, we develop a dynamic stochastic 
agricultural planning model. This model captures the dynamic changes in key variables using state 
space representation and employs a combination of dynamic programming and Monte Carlo 
Simulation (MCS) to handle the inherent stochasticity. By iteratively simulating various scenarios, 
we can assess the robustness of the proposed planting strategy and identify potential risks and 
opportunities. 

2. Modeling and solving integer linear programming models 
2.1 Decision variables 

Specify whether the jth crop is grown on the i-th plot as 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, which is a binary variable where t 
denotes the year in which it is located and k denotes the quarter, as specified: 

𝐶𝐶𝑂𝑂𝑖𝑖𝑡𝑡 = 𝛼𝛼1 + 𝛽𝛽1did𝑖𝑖𝑡𝑡 + 𝛾𝛾1𝑋𝑋𝑖𝑖𝑡𝑡 + 𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡 (1) 

(a) Crop area. 
The area of the jth crop planted in the i-th plot in year t is 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , where (𝑡𝑡 =

2024,2025,⋯ ,2030; 𝑖𝑖 = 1,2,⋯ ,54; 𝑗𝑗 = 1,2,⋯ ,41;𝑘𝑘 = 1,2) , with 𝑘𝑘 = 1  indicating the first 
season; 𝑘𝑘 = 2 indicating the second season. 

At the same time, it is stipulated that only one season of crops can be planted per year, and when 
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡1 = 0, 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡2 can be 1 or 0, and similarly, when 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡2 = 0, 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡2 can be 1 or 0. 

(b) Total crop production: 
The total production of the jth crop in the i-th plot in year t is denoted as 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡. 

𝑄𝑄𝑡𝑡𝑖𝑖𝑗𝑗 = �  
2030

𝑡𝑡=2024

� 
2

𝑘𝑘=1

� 
54

𝑖𝑖=1

𝑛𝑛𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑋𝑋𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑌𝑌𝑗𝑗(𝑗𝑗 = 1,2,⋯ 41) (2) 

where 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 indicates whether the jth crop is grown on the ith plot and Yj is the acre yield of the 
jth crop (41 crops in total). 

(c) Expected sales volume: 
Assuming that the production of the jth crop is its sales volume, the expected sales volume of the 

jth crop is denoted as 𝐸𝐸𝑗𝑗 . 

2.2 Objective function 
Maximize the profit earned in 2024-2030: 

Max𝑊𝑊 = �  
2030
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�𝑄𝑄𝑡𝑡𝑗𝑗𝑃𝑃𝑗𝑗 − 𝑛𝑛𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝑋𝑋𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘𝐶𝐶𝑗𝑗� (3) 

where W represents the profit earned from 2024 to 2030. 
If the crop production does not exceed the expected sales volume, the crop can be marketed 

normally and the excess will not be marketed, which can be obtained as: 
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If the crop production does not exceed the expected sales volume, then the crop can be sold 
normally, yielding: 
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The excess is sold at a 50% reduction in price. 
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2.3 Constraints 
1) The area of each plot planted with crops cannot exceed the total area: 

� 
54

𝑗𝑗=1

𝑋𝑋𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘 ≤ 𝐴𝐴𝑖𝑖 (7) 

2) Plant beans in each plot at least once every three years: 

� 
3

𝑖𝑖=1

𝑇𝑇𝑖𝑖𝑗𝑗 ≥ 1 (8) 

where 𝑇𝑇𝑖𝑖𝑖𝑖 is whether or not each plot is planted with beans: 

𝑇𝑇𝑖𝑖𝑗𝑗 = �1 Growing beans
0 No beans were planted  (9) 

3) Only suitable crops can be grown on different plots: 
Flat dry land, terraced land and hillside land can only grow one crop per year. Watered land can 

grow one or two crops per year. Greenhouses provide a degree of insulation and can grow two 
seasons of crops per year. Smart greenhouses mainly use solar energy to automatically adjust the 
temperature in the shed in winter to ensure the normal growth of crops. 

4) The same plot of land (including greenhouses) cannot be planted with the same crop: 

𝑋𝑋𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘 ⋅ 𝑋𝑋(𝑡𝑡+1)𝑗𝑗𝑘𝑘 = 0 (10) 

5) In order to facilitate field management, the planting area of each crop should not be too small, 
and it may be useful to specify the minimum area, denoted as Squaremin. Where Square 𝑚𝑚𝑚𝑚𝑚𝑚 =
0.25𝐴𝐴𝑖𝑖 

𝑋𝑋𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘 ≥  Square 𝑚𝑚𝑖𝑖𝑛𝑛 (11) 

6) Since each crop cannot be spread too thinly, the total number of plantings of the same crop in 
different plots cannot exceed 𝑁𝑁𝑗𝑗, max , based on the number of times the jth crop is planted in 2023, 
and then the following relationship can be obtained: 

� 
54

𝑖𝑖=1

𝑛𝑛𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘 ≤ 𝑁𝑁𝑗𝑗,𝑚𝑚𝑎𝑎𝑥𝑥 (12) 

7) Non-negative constraints: 
From the actual situation, the area 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of the i-th plot planted with the j-th crop in year t is 

shown to be non-negative: 

𝑋𝑋𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘 ≥ 0 (13) 
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8) Constraints on ordinary greenhouses. 
Ordinary greenhouses grow two seasons of crops per year; in the first season, a wide range of 

vegetables can be grown (with the exception of cabbage, white radish and carrot), and in the second 
season, only edible mushrooms can be grown. 

�  
𝑗𝑗∈ vegetable 

n𝑡𝑡𝑖𝑖𝑗𝑗1 ≤ 1.∀𝑖𝑖 ∈ (General shed) (14) 

�  
𝑗𝑗∈ edible mushroom

n𝑡𝑡𝑖𝑖𝑗𝑗2 ≤ 1.∀𝑖𝑖 ∈ (General shed) (15) 

9) Constraints on smart greenhouses. 
Smart greenhouses are allowed to grow two seasons of vegetables every year (except cabbage, 

white radish and carrot): 

�  
𝑗𝑗∈ vegetable

� 
2

𝑘𝑘=1

n𝑖𝑖𝑗𝑗j ≤ 2,∀𝑖𝑖 ∈ (Smart Shed) (16) 

2.4 Model Solving 
In constructing the integer planning model, we delve into the complex relationships between 

decision variables, objective functions, and constraints, while applying optimization algorithms for 
systematic analysis. We utilize the Python programming language to implement and solve the 
established multidimensional agricultural planning optimization model in order to determine the 
mix of crops to be planted in each plot in order to maximize the overall yield. Given that two 
different cropping strategies (strategy (1) and strategy (2)) are explicitly presented in the title, this 
study will discuss the optimization model in a careful categorization to ensure that the level of 
maximized returns that can be achieved by each strategy can be comprehensively and accurately 
assessed under different strategy requirements. 

First, strategy (1) may focus on the cultivation of a specific crop, possibly based on market 
demand, cost-benefit analysis, or specific environmental conditions. Strategy (2), on the other hand, 
may consider a wider range of factors, such as long-term ecological balance, diversification of 
planting to counteract risks, or the use of specific technologies to improve production efficiency. By 
classifying the model into these two strategy categories, we are able to more precisely analyze and 
compare the optimal solutions under different strategies, thus providing a more comprehensive 
basis for decision makers. 

When discussing the categorization, we will first identify the key variables and constraints under 
each strategy, including but not limited to crop type, planting area, expected yield, cost inputs, 
market selling price, environmental impacts, and other factors. 

2.5 Analysis and visualization of results 
Analysis of the results leads to the following important findings: 
1) Crop rotation: Checking the planting of legumes to confirm that the requirement of planting at 

least once every three years is being met. 
This is essential for maintaining soil fertility and achieving long-term sustainability. 
2) Land use patterns: Look at how different types of land are cultivated to see how the model 

utilizes different land characteristics to maximize returns. 
Land use patterns: Look at how different types of land are cultivated to see how the model uses 

the characteristics of different lands to maximize returns. For example, it was found that irrigated 
land was used more for growing high-value vegetables than rice. 

3) Cropping structure: Observe the distribution of acreage planted with different crops. Some 
high-value or high-demand crops occupy larger acreage, while low-yield crops are planted only 
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minimally to meet crop rotation requirements, which reflects the model's trade-off between 
economic efficiency and sustainability. 

This reflects the model's trade-off between economic efficiency and sustainability. 
4) Seasonal cropping patterns: Seasonal cropping patterns can be observed when comparing 

cropping across seasons, reflecting the growth cycles of different crops and the fact that they are 
grown in different seasons. 

Seasonal cropping patterns can be observed when comparing cropping in different seasons, 
reflecting seasonal variations in the growth cycles of different crops and in market demand. 

5) Impact of overcropping: Compare the results of two overcropping scenarios and analyze the 
impact of the overcropping treatment on planting decisions. 

Impact of over-yielding: Compare the results of the two over-yielding treatments and analyze the 
impact of the over-yielding treatment on planting decisions. For example, an increase in the area 
planted with certain high-yielding crops is seen in the case where the excess yield can be sold at 
50%. 

For example, an increase in acreage of certain high-yielding crops is seen when the excess yield 
can be sold at 50%. 

In order to show these results more directly, we perform further data visualization, which allows 
us to fully understand the planting decisions given by the optimization model. 

This validates the model and provides farmers and policy makers with an intuitive and 
understandable way to make decisions. 

It provides farmers and decision makers with intuitive and easy-to-understand decision support. 
For example, it may be found that the area planted to certain high-value crops can be increased. At 
the same time the optimal planting strategies are different in the two over-yield treatment scenarios, 
which can provide targeted advice to farmers and help them to make better planting decisions 
according to the actual market situation. 

Part of the solution results are shown in Figure 1. 

 
Fig. 1 Heat map of planting trends. 

3. Modeling with uncertainty considerations 
Due to the introduction of uncertain factors such as future sales, planting costs and mu yield, 

these factors have a certain degree of volatility and uncertainty. Therefore, it is necessary to adjust 
the model on the basis of Problem 1, and then solve the optimal planting program after the 
introduction of these uncertain factors. 

1) Uncertain factors 
Changes in mu yield: mu yield will be affected by climate and other factors, there are changes of 

± 10% per year. 

85



Changes in expected sales volume: wheat and corn have a growing trend in the future, with an 
average annual growth rate of 5%-10%. 

The expected future sales volume of other crops is expected to change by ±5% per year relative 
to 2023. 

Changes in growing costs: Growing costs are expected to increase by about 5% per year on 
average. 

Fluctuation of sales price: grain crops are basically stable, vegetable crops have a growing trend, 
with an average growth rate of about 5% per year; the sales price of edible fungus is stable and 
decreasing, with a decrease of about 1%-50% per year, especially the sales price of morel 
mushrooms with a decrease of 5% per year. 

2) Uncertain parameters 
Expected rate of change of sales volume 𝛿𝛿: The expected rate of change of sales volume of 

wheat is 𝛿𝛿1, with a range from 0.05 to 0.10, and the expected rate of change of sales volume of 
other crops is 𝛿𝛿2, with a range from -0.05 to 0.05. 

Rate of change of yield per acre 𝜁𝜁𝑗𝑗 : The rate of change of yield per acre of the jth crop is noted 
as 𝜁𝜁𝑗𝑗 can be known to range from -0.1 to 0.1. 

Rate of increase in cost of cultivation of crops 𝜂𝜂 : Where 𝜂𝜂 = 0.05 
Rate of change of selling price 𝜉𝜉 : Remember the rate of change of selling price of vegetables as 

𝜉𝜉1, 𝜉𝜉1 = 0.05; remember the rate of change of selling price of edible mushrooms as 𝜉𝜉2, where 𝜉𝜉2 
ranges from -0.01 to 0.05; and remember the rate of change of selling price of morel mushrooms as 
𝜉𝜉3, where 𝜉𝜉3 = 0.05 

Establishing a mathematical model similar to the one in Section 2 the results can be obtained as 
shown in Figure 2. 

 
Fig. 2 Heat map of planting trends 

4. Conclusion 
In this paper, we have presented a novel approach for optimizing crop planting strategies based 

on Integer Linear Programming (ILP) models and Monte Carlo Simulation (MCS) algorithms. By 
incorporating data preprocessing, rigorous constraint modeling, and dynamic stochastic planning, 
we have developed a comprehensive framework that can address the complexities and uncertainties 
of agricultural planning. 

The results of our study demonstrate the effectiveness of the proposed methodology in 
maximizing farming profits over the specified time horizon. The heatmaps generated from the 
simulations provide valuable insights into the dynamic trends of planting acreage and profits for 
different crops, allowing farmers to make informed decisions about their planting strategies. 
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Overall, our approach represents a significant step forward in the field of agricultural planning 
and optimization. By leveraging advanced mathematical and simulation techniques, we have 
demonstrated the potential for significant improvements in profitability and resource management 
in the agricultural sector. Future research could explore the integration of additional data sources 
and constraints, as well as the application of more advanced optimization algorithms, to further 
enhance the robustness and adaptability of the proposed planting strategy. 

References  
[1] M. Fazlali, M. Mirhosseini, M. M. Moghaddam, and S. Timarchi, Load balanced sub-tree 
decomposition algorithm for solving Mixed Integer Linear Programming models in behavioral 
synthesis[J]. omput. Electr. Eng., vol. 123, p. 110104, Apr. 2025. 
[2] A. Kraiem, J.-F. Audy, and A. Lamghari, Mixed integer linear programming model for a 
multi-depot arc routing problem with different arc types and flexible assignment of end depot[J]. 
Transp. Res. Procedia, vol. 82, pp. 1109–1119, Jan. 2025. 
[3] G. A. Cardona, D. Kamale, and C.-I. Vasile, STL and wSTL control synthesis: A 
disjunction-centric mixed-integer linear programming approach[J]. Nonlinear Anal. Hybrid Syst., 
vol. 56, p. 101576, May 2025. 
[4] S.Y. Yang, D.B. Meng, H.F. Yang, C.Q. Luo and X.Y. Su, Enhanced soft Monte Carlo simulation 
coupled with support vector regression for structural reliability analysis[J]. Proc. Inst. Civ. Eng. - 
Transp., Feb. 2025. 
[5] M. Firouz, A. Oroojlooy-Jadid, and A. Asef-Vaziri, Dynamic unequal area facility layout design 
under stochastic material flow, re-arrangement cost, and change period[J]. Comput. Ind. Eng., vol. 
203, p. 110971, May 2025. 
 
 

87




