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Abstract. Numerical optimization is a classical field in operation research and computer science, 
which has been widely used in the areas such as physics and economics. Although, optimization 
algorithms have achieved great success for plenty of applications, handling the big data in the best 
fashion possible is a very inspiring and demanding challenge in the artificial intelligence era. 
Stochastic gradient descent (SGD) is pretty simple but surprisingly, highly effective in machine 
learning models, such as support vector machine (SVM) and deep neural network (DNN). 
Theoretically, the performance of SGD for convex optimization is well understood. But, for the 
non-convex setting, which is very common for the machine learning problems, to obtain the 
theoretical guarantee for SGD and its variants is still a standing problem. In the paper, we do a 
survey about the SGD and its variants such as Momentum, ADAM and SVRG, differentiate their 
algorithms and applications and present some recent breakthrough and open problems. 

1. Introduction 
Optimization is an important tool in decision science and in the analysis of physical systems. In the 
simplest case, an optimization problem consists of a real objective function and a set of constraints. 
The goal of the problem is to find the maximum or minimum solution of the objective function in 
the feasible domain of the constraints. Formally speaking, the optimization problem can written as  

min
𝑥𝑥∈𝑅𝑅𝑑𝑑

𝑓𝑓(𝑥𝑥) 
𝑠𝑠. 𝑡𝑡.  𝑔𝑔𝑖𝑖(𝑥𝑥) ≤ 0, ∀𝑖𝑖 ∈ ℰ, 

     ℎ𝑗𝑗(𝑥𝑥) = 0,    ∀𝑗𝑗 ∈ ℐ, 
Where 𝑓𝑓(𝑥𝑥) is the objective function and 𝑔𝑔𝑖𝑖(𝑥𝑥) and ℎ𝑗𝑗(𝑥𝑥) are the constraints.  
It is a long story of the development of algorithms to solve the problem. In 1947, Dantzig[5] 

offered the first practical algorithm for linear programming which is known as simplex algorithm . 
However, it takes exponential time in the worst case. Later, Leonid Khachiyan proved that ellipsoid 
method can solve the linear programming in polynomial time. However, the ellipsoid method does 
not perform well in practice. The first practical polynomial time algorithm called Karmarkar’s 
algorithm [1]. Actually, it is one of the interior point methods, which is a certain class of algorithms 
that can solve linear and nonlinear convex optimization problems. There are two common ways to 
design a interior point algorithm. One is called barrier method and the other is called primal-dual 
interior point algorithm.  

Except the methods for general convex programming, for some specific settings, there are more 
effective algorithms. One useful setting is that the programming is unconstrained, in which the 
support domain of the variables are unconstrained. Although, it is more simplified version for the 
original problem, it is very common in the machine learning problems. Gradient descent (GD), 
which is also known as full batch gradient descent algorithm, is an implemented algorithm for the 
unconstrained problems. The iteration method of GD is pretty simple as follows. 

𝒙𝒙𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒕𝒕 − 𝜸𝜸𝛁𝛁𝒇𝒇(𝒙𝒙𝒕𝒕) 

2017 2nd International Conference on Mechatronics and Information Technology (ICMIT 2017)

Copyright © (2017) Francis Academic Press , UK 360



Where 𝛾𝛾 is an adequately chosen step length? The algorithm achieves linear convergence when 
the initial estimate 𝑥𝑥0 is close enough to the optimum and the step length 𝛾𝛾 is sufficiently small. 
Here, linear convergence means that log �1

𝜖𝜖
�~𝑡𝑡 where 𝜖𝜖 represents the residual error. Methods 

based on Newton’s method and inversion of the Hessian techniques can be better alternatives. Such 
methods converge in fewer iterations, but the cost of each iteration is higher. An example is the 
BFGS [11] method. Although these second order gradient descent methods usually achieve 
quadratic convergence, the second order differential may not exist or is very difficult to obtain. 
There are some techniques to avoid computing a Hessian matrix exactly. One common method is 
quasi-Newton method like BFGS.  

There are some variants of BFGS, such as L-BFGS method, to handle the memory limited issues. 
The real world problems are too large to compute the full batch gradient descent each time. We 
should note that the real problem in machine learning has more specific characters. Usually, in the 
supervised learning setup, the objective function has the form of a sum, which is defined as follows.  

𝑓𝑓(𝑥𝑥) =
1
𝑛𝑛

 �𝑓𝑓𝑖𝑖(𝑥𝑥
𝑛𝑛

𝑖𝑖=1

) 

Each summand function 𝑓𝑓𝑖𝑖(𝑥𝑥) is typically associated with the 𝑖𝑖-th observation in the data set. 
Usually, 𝑓𝑓𝑖𝑖(𝑥𝑥) is the value of the loss function at 𝑖𝑖-th example and 𝑓𝑓(𝑥𝑥) is called expirical risk. 
There are many machine learning problems has the form, such as  

SVM: 𝑓𝑓(𝑤𝑤) = 𝜆𝜆𝑤𝑤2 + ∑ max {0, 1 − 𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇Φ(𝑥𝑥𝑖𝑖)} for Φ(𝑥𝑥𝑖𝑖) ∈ 𝑅𝑅𝑑𝑑 ,𝑦𝑦 = ±1 
K-Means: 𝑓𝑓(𝑤𝑤) = ∑ min𝑤𝑤1,𝑤𝑤2…𝑤𝑤𝑘𝑘�𝑧𝑧𝑖𝑖 − 𝑤𝑤𝑗𝑗�

2
𝑧𝑧𝑖𝑖  for 𝑧𝑧𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑 ,𝑤𝑤1, …𝑤𝑤𝑑𝑑 ∈ 𝑅𝑅𝑑𝑑 

Lasso: 𝑓𝑓(𝑤𝑤) = 𝜆𝜆 |𝑤𝑤|1 +∑�1 − 𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇Φ(𝑥𝑥𝑖𝑖)�
2
 for Φ(𝑥𝑥𝑖𝑖) ∈ 𝑅𝑅𝑑𝑑 ,𝑦𝑦 = ±1 

In this setting, the stochastic gradient descent algorithm performs much better. Instead of 
computing the gradient descent exactly, in each iteration, randomly pick one component 𝑓𝑓𝑖𝑖(𝑥𝑥) and 
do the following update: 

𝒙𝒙𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒕𝒕 − 𝜸𝜸𝒕𝒕𝛁𝛁𝒇𝒇𝒊𝒊(𝒙𝒙𝒕𝒕) 
Note that the index 𝑖𝑖 is randomly picked in each iteration. Thus, in expectation, the SGD has the 

same performance as GD. There are plenty of works studying the performance of SGD in several 

different settings. For the non-smooth objective functions, the convergence rate of SGD is , 
and for the smooth functions, the convergence rate is .[4] [21]. The searching path of SGD is 
shown in Fig. 1 for an example (The sinuous vector path is called zig-zagging). 

 
Fig. 1 The illustration of the searching path of SGD 

(𝑥𝑥𝑖𝑖 is the optimal result of the 𝑖𝑖𝑡𝑡ℎ iteration) 
Here is a detailed example. 
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[Task 1]: The data of the 4 samples of function 𝐹𝐹(𝑋𝑋) = ∑ 𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗𝑛𝑛−1
𝑗𝑗=1 + 𝜃𝜃𝑛𝑛(∀𝑋𝑋 ∈ 𝑅𝑅(𝑛𝑛−1)) are listed 

in the Table 1 as below, please find the best simulated 𝐹𝐹(𝑋𝑋). 
Table 1 Sample Set 01 

i(Sample No.) 𝑥𝑥1𝑖𝑖  𝑥𝑥2𝑖𝑖  𝐹𝐹𝑖𝑖�𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 � 
1 2 1 11 
2 2 2 16 
3 3 1 14 
4 3 2 19 

 
Solution with algorithm SGD can be summarized as following: 
Posit that the target linear function is 𝐹𝐹(𝑥𝑥1, 𝑥𝑥2) = 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + 𝜃𝜃3. 

If 𝜃𝜃 = �
𝜃𝜃1
𝜃𝜃2
𝜃𝜃3
� ,𝑋𝑋 = �

𝑥𝑥1
𝑥𝑥2
1
�, then 𝐹𝐹(𝑥𝑥1, 𝑥𝑥2) = 𝑿𝑿𝑻𝑻𝜽𝜽 (𝜃𝜃 ∈ 𝑅𝑅3,𝑋𝑋 ∈ 𝑅𝑅3) 

[Iteration1]: Select a sample randomly from the sample set with 4 samples. 
Posit that the sample randomly selected is sample 1:  𝑿𝑿𝒔𝒔𝟏𝟏𝟏𝟏×𝟑𝟑 = (𝟐𝟐 𝟏𝟏 𝟏𝟏),𝑭𝑭𝒔𝒔𝟏𝟏𝟏𝟏×𝟏𝟏 = 𝟏𝟏𝟏𝟏 
The deviation function is: 𝑉𝑉(𝜃𝜃)𝟏𝟏×𝟏𝟏

1 = 𝐹𝐹𝑠𝑠1 − 𝐹𝐹(𝑋𝑋𝑠𝑠1) = 11 − (2𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3) 
The loss function (Target of the optimization) 𝐽𝐽(𝜃𝜃)𝟏𝟏×𝟏𝟏

1 = 1
2

(11 − (2𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3))2 

The 1st order gradient of 𝐽𝐽(𝜃𝜃): 𝐺𝐺(𝜃𝜃)3×1
1 = −(𝑋𝑋𝑠𝑠1)𝑇𝑇𝑉𝑉(𝜃𝜃)1 = �

4𝜃𝜃1 + 2𝜃𝜃2 + 2𝜃𝜃3 − 22
2𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3 − 11
2𝜃𝜃1 + 𝜃𝜃2 + 𝜃𝜃3 − 11

� 

Posit that the initial value of 𝜽𝜽 is 𝜽𝜽𝟏𝟏 = �
0
0
0
�, then the initial 𝐺𝐺(𝜃𝜃)1 = �

−22
−11
−11

�. 

The deviation function is: 𝑉𝑉(𝜃𝜃)1 = 11,  𝐽𝐽(𝜃𝜃)1 = 60.5 

If 𝜂𝜂1 is set to be 0.1, then 𝜽𝜽𝟐𝟐 = 𝜽𝜽𝟏𝟏 − 𝜂𝜂1𝐺𝐺(𝜃𝜃)1 = �
2.2
1.1
1.1

� 

[Iteration2]: Repeat the rule of [iteration1] but change the sample with another one randomly 
selected from the sample set.  

Assume that the second sample got randomly is sample 2:  𝑿𝑿𝒔𝒔𝟐𝟐𝟏𝟏×𝟑𝟑 = (𝟐𝟐 𝟐𝟐 𝟏𝟏), 𝑭𝑭𝒔𝒔𝟐𝟐𝟏𝟏×𝟏𝟏 = 𝟏𝟏𝟏𝟏. 
The deviation function is: 𝑉𝑉(𝜃𝜃)𝟏𝟏×𝟏𝟏

2 = 𝐹𝐹𝑠𝑠2 − 𝐹𝐹(𝑋𝑋𝑠𝑠2) = 16 − (2𝜃𝜃1 + 2𝜃𝜃2 + 𝜃𝜃3)=8.3 
The loss function (Target of the optimization)𝐽𝐽(𝜃𝜃)𝟏𝟏×𝟏𝟏

2 = 1
2

(16 − (2𝜃𝜃1 + 2𝜃𝜃2 + 𝜃𝜃3))2=34.45 

The gradient of 𝐽𝐽(𝜃𝜃): 𝐺𝐺(𝜃𝜃)3×1
2 = −(𝑋𝑋𝑠𝑠2)𝑇𝑇𝑉𝑉(𝜃𝜃)2 = �

4𝜃𝜃1 + 4𝜃𝜃2 + 2𝜃𝜃3 − 32
4𝜃𝜃1 + 4𝜃𝜃2 + 2𝜃𝜃3 − 32
2𝜃𝜃1 + 2𝜃𝜃2 + 𝜃𝜃3 − 16

�=�
−16.6
−16.6
−8.3

� 

If 𝜂𝜂2 is set to be 0.01,𝜽𝜽𝟑𝟑 = 𝜽𝜽𝟐𝟐 − 𝜂𝜂2𝐺𝐺(𝜃𝜃)2 = �
2.37
1.27
1.18

�, then 𝐽𝐽(𝜃𝜃)3 = 9.91 

Use the similar way to do following iterations, 𝐽𝐽(𝜃𝜃)4 = 0.01(when 𝜂𝜂3 = 0.15). 

2. The Variants of SGD 
In this section, we discuss the variants of SGD. These variants make SGD more useful and can be 
applied in more settings. There are several techniques for the variants, such as mini-batch, 
momentum, ADAM and variance reduced method. Then we introduce them below. 

Mini-batch. Actually, instead of performing a parameter update for each single training date, 
usually, we perform the stochastic gradient descent for every mini-batch of n-training data. 
Formally speaking, it updates as follows.  

𝒙𝒙𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒕𝒕 − 𝜸𝜸𝛁𝛁�𝒇𝒇𝒊𝒊(𝒙𝒙𝒕𝒕)
𝒊𝒊=𝑩𝑩
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Where set B includes the training data in a mini-batch. This way reduces the variance of the 
parameter updates, which can lead to more stable convergence. Moreover, it can make use of highly 
optimized matrix optimizations that make computing the gradient w.r.t. a mini-batch very efficient. 
Hence, mini-batch SGD is typically used in machine learning training process.  

 
Take Task 1 as example. Dividing the 4 samples into batch 1(sample 1 and sample 2) and batch 

2(sample 3 and sample 4), then the n (quantity) of training data for each batch is 2. For the course of 
solving the Task 1, the only difference between SGD and mini-batch is that the former uses only 
one sample while the later uses one batch in each iteration 𝑿𝑿𝒔𝒔𝟏𝟏𝟏𝟏×𝟑𝟑and 𝑭𝑭𝒔𝒔𝟏𝟏𝟏𝟏×𝟏𝟏 should be changed to 

be  𝑿𝑿𝒔𝒔𝟏𝟏𝟐𝟐×𝟑𝟑 = �𝟐𝟐 𝟏𝟏 𝟏𝟏
𝟐𝟐 𝟐𝟐 𝟏𝟏� ,𝑭𝑭𝒔𝒔𝟏𝟏𝟐𝟐×𝟏𝟏 = �𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏�,   𝑿𝑿𝒔𝒔𝟐𝟐𝟏𝟏×𝟑𝟑 and  𝑭𝑭𝒔𝒔𝟐𝟐𝟏𝟏×𝟏𝟏 should be changed to be  𝑿𝑿𝒔𝒔𝟐𝟐𝟐𝟐×𝟑𝟑 =

�𝟑𝟑 𝟏𝟏 𝟏𝟏
𝟑𝟑 𝟐𝟐 𝟏𝟏�,𝑭𝑭𝒔𝒔𝟏𝟏𝟐𝟐×𝟏𝟏 = (𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏), and there is no the course of random selection in Mini-batch. 

Momentum. When the surface curves much more steeply in one dimension than another 
dimension, SGD has poor performance since it would oscillate across the slopes. A simple way to 
overcome the weakness is to introduce a momentum term in the update iteration. Momentum 
simulates the concept inertia in physics. It means that in each iteration, the update mechanism is not 
only related to the gradient descent, which refers to the dynamic term, but also maintains a 
component which related to the direction of last update iteration, which refers to the momentum. 
Since it is similar to push a ball down in hill, the momentum method is also named heavy ball 
method. Formally, it has the following update rule: 

𝒗𝒗𝒕𝒕 = 𝒙𝒙𝒕𝒕 − 𝒙𝒙𝒕𝒕−𝟏𝟏, 𝒗𝒗𝒕𝒕+𝟏𝟏 = 𝝆𝝆𝒗𝒗𝒕𝒕 − 𝜸𝜸𝛁𝛁�𝒇𝒇𝒊𝒊(𝒙𝒙𝒕𝒕)
𝒊𝒊=𝑩𝑩

 , 𝒙𝒙𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒕𝒕 + 𝒗𝒗𝒕𝒕+𝟏𝟏 

Where   𝜌𝜌(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) is the momentum? The constant determines the extent of inertia. The 
effect of Momentum can be shown in Fig. 2 for an example. 

 
Fig. 2 The compare of the SGD algorithms with and without momentum 

 
Take Task 1 as example. The algorithm in the end of the 3rd iteration of SGD should be changed 

from 𝜽𝜽𝟑𝟑 = 𝜽𝜽𝟐𝟐 − 𝜂𝜂2𝐺𝐺(𝜃𝜃)2 = �
2.37
1.27
1.18

� to  𝜽𝜽𝟑𝟑 = 𝜽𝜽𝟐𝟐 − 𝜂𝜂2𝐺𝐺(𝜃𝜃)2 + 𝜌𝜌(𝜽𝜽𝟐𝟐 − 𝜃𝜃1) = �
3.47
1.82
0.73

� (set 

𝜌𝜌 = 0.5)for Momentum. It shows that the value 𝜃𝜃3  approximates to the optimal faster with 
Momentum. For each of the following iterations in Momentum, 𝜽𝜽𝒕𝒕+𝟏𝟏 = 𝜽𝜽𝒕𝒕 − 𝜂𝜂𝑡𝑡𝐺𝐺(𝜃𝜃)𝑡𝑡 −
𝜌𝜌(𝜃𝜃𝑡𝑡 − 𝜃𝜃𝑡𝑡−1) is the update rule. According to the experience, 𝜌𝜌 is usually set to be 0.5, 0.9 or 
0.99 for Momentum. 

There are some other ways to choose momentum. Nesterov’s momentum is an improvement, 
which is known as Nesterov’s Accelerated Gradient (NAG) descent [13]. The complexity of NAG 

matches the theoretical lower bound which is  for smooth functions and  for 
strongly convex and smooth functions. Start at an arbitrary initial point, NAG iterates the following 
equations for each step. 
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𝒗𝒗𝒕𝒕 = (𝒙𝒙𝒕𝒕 − 𝒙𝒙𝒕𝒕−𝟏𝟏 + 𝝆𝝆𝒗𝒗𝒕𝒕−𝟏𝟏)/(𝟏𝟏 + 𝝆𝝆),𝒗𝒗𝒕𝒕+𝟏𝟏 = 𝝆𝝆𝒗𝒗𝒕𝒕  − 𝜸𝜸𝛁𝛁�𝒇𝒇𝒊𝒊(𝒙𝒙𝒕𝒕)
𝒊𝒊=𝑩𝑩

,

𝒙𝒙𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒕𝒕 − 𝝆𝝆𝒗𝒗𝒕𝒕 + (𝟏𝟏 + 𝝆𝝆)𝒗𝒗𝒕𝒕+𝟏𝟏 
There are some works to explain the intuition of NAG and study whether it is the best iterated 

rules. Recently, Jordan and Al.[19] Show that the Nesterov’s momentum has strong relation with 
the partial differential equations. They show that the trajectory of NAG is corresponding to 
brachistochrone according to the variational method. See more details for the Nesterov’s method, 
we refer reader to see the survey.[14] Recently, Allen-Zhu provides a new momentum named 
Katyusha momentum and achieves great performance in many settings.[3] 

An illustration of the difference among SGD, Momentum & Nesterov’s momentum is Fig. 3: 

 
Fig. 3 An illustration of the difference among SGD, Momentum & Nesterov’s momentum 

ADAM methods. So far, the method we introduced use the constant step length , which is 
related to the final computational accuracy. There are some methods to update the step length 
automatically, such as vSGD, Adadelta, AdaGrad, RMSProp, Adam, Nadam[17][7][9]. AdaGrad 
adapts the learning rate to the parameters, performing larger updates for infrequent and smaller 
updates for frequent parameters. Adadelta works well with sparse gradients. RMSProp works well 
in on-line and non-stationary settings. Adam is designed to combine the advantages of both 
AdaGrad and RMSProp, which is computationally efficient, has little memory requirements and is 
well suited for problems that are large in terms of data or parameters. 

Then, the update rule of ADAM is as following 
(𝑎𝑎𝑏𝑏: 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁. ;  (𝑎𝑎)𝑏𝑏: 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝): 
𝒈𝒈𝒕𝒕+𝟏𝟏 = 𝛁𝛁𝒇𝒇(𝒙𝒙𝒕𝒕) , 𝒎𝒎𝒕𝒕+𝟏𝟏 = 𝜷𝜷𝟏𝟏𝒎𝒎𝒕𝒕 + (𝟏𝟏 − 𝜷𝜷𝟏𝟏)𝒈𝒈𝒕𝒕+𝟏𝟏 , 𝒗𝒗𝒕𝒕+𝟏𝟏 = 𝜷𝜷𝟐𝟐𝒗𝒗𝒕𝒕 + (𝟏𝟏 − 𝜷𝜷𝟐𝟐)(𝒈𝒈𝒕𝒕+𝟏𝟏)𝟐𝟐, 
𝒎𝒎′𝒕𝒕+𝟏𝟏 = 𝒎𝒎𝒕𝒕+𝟏𝟏/(𝟏𝟏 − (𝜷𝜷𝟏𝟏)𝒕𝒕+𝟏𝟏),𝒗𝒗′𝒕𝒕+𝟏𝟏 = 𝒗𝒗𝒕𝒕+𝟏𝟏/(𝟏𝟏 − ( 𝜷𝜷𝟐𝟐)𝒕𝒕+𝟏𝟏),𝒙𝒙𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒕𝒕 − 𝜸𝜸𝒎𝒎′𝒕𝒕+𝟏𝟏/(�𝒗𝒗′𝒕𝒕+𝟏𝟏 + 𝛜𝛜) 

Adam is the best proposed algorithm for stochastic optimization and a good default choice for 
most cases. Show it in detail by taking Task 1 as example here. Set 𝛼𝛼 = 0.001, 𝛽𝛽1 = 0.9, 𝛽𝛽2 =
0.999, 𝜖𝜖 = 10−8, 𝜃𝜃1 = 0, 𝑚𝑚1 = 0, 𝑣𝑣1 = 0, 𝜂𝜂1 = 0.1 are the initial values, then the algorithm in 
the end of the 1st iteration of SGD should be changed from 𝜃𝜃2 = 𝜃𝜃1 − 𝜂𝜂1𝐺𝐺(𝜃𝜃)1 to be following 
[New Iteration1]algorithm: 

𝑔𝑔2 = 𝐺𝐺(𝜃𝜃)1 = �
−22
−11
−11

� ,𝑚𝑚2 = 𝛽𝛽1𝑚𝑚1 + (1 − 𝛽𝛽1)𝑔𝑔2 = �
−2.2
−1.1
−1.1

� , 𝑣𝑣2 = 𝛽𝛽2𝑣𝑣1 + (1 − 𝛽𝛽2)(𝑔𝑔2)2 =

0.726,  𝑚𝑚′2 = 𝑚𝑚2

(1−(𝛽𝛽1)2)
= �

−11.58
−5.79
−5.79

� , 𝑣𝑣′2 = 𝑣𝑣2

(1−( 𝛽𝛽2)2)
= 0.73,   𝜽𝜽𝟐𝟐 = 𝜽𝜽𝟏𝟏 − 𝜂𝜂1𝑚𝑚′2

�𝑣𝑣′2+𝜖𝜖
= �

1.36
0.68
0.68

�.  

For the following iterations with ADAM, the iterative rules are same. 
SVRG. Recently, some researchers find that SGD has slow convergence asymptotically due to 

the inherent variance. By now, Stochastic Variance Reduced Gradient (SVRG) [8] and its variants 
such as S2GD, SAG and SAGA [6][10] have delivered much progress through taking advantage of 
the variance reduced technique. SVRG has linear convergence results for smooth and strongly 
convex loss. At each time of SVRG, keep a version of estimated x� as that is close to the optimalx.   
For example, keep a snapshot of x� after every m SGD iterations. Moreover, maintain the average 
gradient. µ = 1

𝑛𝑛
∑ ∇𝑓𝑓𝑖𝑖(𝑥𝑥�)𝑛𝑛
𝑖𝑖=1  . Then, the update rule of SVRG is as follows: 
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 𝒙𝒙𝒕𝒕+𝟏𝟏 = 𝒙𝒙𝒕𝒕 − 𝜸𝜸(𝛁𝛁𝒇𝒇𝒊𝒊(𝒙𝒙𝒕𝒕) − 𝛁𝛁𝒇𝒇𝒊𝒊(𝒙𝒙�) + 𝝁𝝁) 
Despite the meteoric rise of VR methods, their analysis for general non-convex problems is 

largely missing. Recently, there are some works studying to apply SVRG algorithms for the 
non-convex settings.[16] 

3. Distributed and Non-convex Extension 
So far, we know that SGD is a popular algorithm that can achieve state-of-the-art performance 

on a variety of machine learning tasks. In the big data era, there are two principle challenges for 
SGD. One is to apply it in the distributed system. The other is to process the non-convex objective 
functions, which is common in machine learning problems.  

Distributed Extension. Several researchers have recently proposed schemes to parallelize SGD, 
one of the most famous one is Hogwild![15]. Actually, the algorithm is simply applying SGD in the 
distributed system without any locking. It means that the algorithm allows processors access to 
shared memory with the possibility of overwriting each other's work. When the associated 
optimization problem is sparse, meaning most gradient updates only modify small parts of the 
decision variable, then Hogwild! Achieves a nearly optimal rate of convergence. Recently, there are 
some improvement for Hogwild! Besides, there are some works applying the SGD in the dual 
problem. One of the typical algorithm is parallel dual coordinate descent algorithm [18].  

Non-convex Extension. Although, it has achieved great process for the theoretical analysis for 
SGD recent years, most of the results can only apply for the convex objective functions. As we 
know, most of the objective functions in machine learning problems are non-convex and SGD 
works well in practice. To achieve the theoretical guarantee for SGD is the current research focus. 
There are some partial progresses in this problem. Several works study some special non-convex 
objective functions and find SGD or its variants can be convergence. Besides, some researchers [2] 
find that in many machine learning problems, the minimal value of local minimum is a good 
approximation for the global minimum. Moreover, it is not difficult to obtain a local minimum since 
the quantity of local minimum is significant. Very recently, there are researchers studying the 
hitting time [20] for the optimization problems. They find that although, the mixing time 
(convergence to global minimum) is exponential long in some problems, the hitting time is 
polynomial. Hence, we can expect to get a good approximation results in polynomial time.  

4. Conclusion 
Optimization problem is the essential problem in many areas such as computer science, physics 

and economics. As we know, today is the big data era. How to handle the terabyte-class or even 
petabyte-class datasets is a great challenge for the researchers. In this paper, we introduce the 
start-of-art algorithm for unconstrained problems in finite-sum form. Moreover, we explain the 
variants of SGD in details and discuss the two current frontiers about the SGD algorithms.  
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