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Abstract.In this paper,we consider a continuous flow ¢:Rx X — X ,where X is acompact
metric space,and we prove that ¢ is Li-Yorke chaotic if and only if ¢x¢ is Li-Yorke chaotic; ¢
is distributional chaotic if and only if @x¢ is distributional chaotic.

Introduction

In 1975,Li and Yorke first gave the definition of chaos(see [3]),the definition opened the door on
researching chaos,many scholars began to explore the chaos and give the different notions and
concepts of chaos.In 1994,Schweizer and Smital defined a new chaos named distributional
chaos(see[4,6]).The scholar's effort is to clarify the essence of the complexity of dynamical systems.
Nowadays to investigate the chaotic behavior of dynamical systems has become a hot subject.

Preliminaries

Let (X,d) be a compact metric space with metric d ,write R =(-o0,+0) .We call
@:Rx X — X isacontinuous flow if ¢ satisfies the following conditions;

(D e(0,x)=x,Yxe X ;(2) ¢(t,): X = X,VteR is homeomorphism.

B e(to(s,x)=p(s+t,X)),Vs,teR.

The product metric p on the product space X x X is defined by

p((x,y), (X', y7)) = max{d(x,x),d(y,y)} forany(xy),(X,y)eXxX.
A continuous flow @x@:Rx X xX — X x X is defined by

exo(t,(x,y))=(p(t.x),@(t,y)),Vxe X forany teR and (x,y)e X xX

@ s said to be Li-Yorke chaotic if there exists an uncountable set D < X such that for any
pair (x,y)eDxD with x=y,

(D liminf d(p(t,x).¢(t,y)) =0; (2) limsupd(p(t. ). ¢(t,y)) > 0

For any real number s>0,x,ye X ,let

(D, () =liminf [ 7,.,(d(p(tx), 0t y)et

(2) EXV (s)= "rp_iup%j; X10,5] (d (go(t’ X) , ¢(t’ Y)))dt

Where y,(x) is 1 if xe A,and y,(x) is 0 if x¢ A.Obviously F, (s)and Fy(s)are both
nondecreasing functions.We call (x,y)e X x X is a pair displaying distributional chaos if
(1) E,, (a) =0,for some a>0;(2) Fx(s)=1, forany s>0.

@ is said to display distributional chaotic if there exists an uncountable set D < X such that
any two different points in D is a pair displaying distributional chaos.For

simplicity,lete, (@, X, y,S) = L: Zoa(@(@(t,x),(t, y)))dt,
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F(p, %, Y,s) = Iirtninf%gt((p,x, y,s), F(@, X, Y,s) = Iimsup%gt(go, X, V,5)
% t—owo

Results

Theorem 3.3 Let (X,d)be a compact metric space, ¢:Rx X — X be a continuous flow.Then
@ is Li-Yorke chaotic if and only if ¢@x¢ is Li-Yorke chaotic.
Proof Suppose ¢ is Li-Yorke chaotic.Then there exists an uncountable set D < X such that
for any pair (x,y)e DxD with x=vy,
liminf d(p(t,x),e(t,y))=0 and Ilriswupd(go(t, x),(t,y))>0.
Let D'=DxD then D'c XxX isanuncountable set.Taking x=(x,y),
v=(X,y')eD’',and u=#v.Notingthat x,y,x,y'eD,x=x,0or y=y’,
then we have if x=x",and y=Yy’,
liminf d(p(t,x),@(t,x'))=0 and limsupd(p(t,x),e(t,x"))=0.

t—ow
IirtrLiwnfd(go(t,y),go(t,y’))zo nd limsupd(e(t,y).e(t,y'))>0.
If x=x",and y=y’,

Iirtn inf d(e(t,x),@(t,x'))=0 and limsupd(e(t,x),¢(t,x"))=0.

t—w©

liminf d(p(t,y).@(t,y')) =0 and limsupd(e(t,y).¢(t,y')>0.

t—w

b}

If x=x",and y=y’,
liminf d(e(t,x),@(t,x'))=0 and limsupd(e(t,x),e(t,x’))>0.

t—oo

liminf d(p(t,y).@(t,y'))=0 and limsupd(p(t,y).@(t,y')=0.

t—o

Hence
Iirtrlionf ploxp(t, 1), pxp(t,v))

= liminf max{d (¢ (t, x),¢(t,x)),d(¢(t,y),@(t,y')}=0
lirpswupp(cox<0(t,ﬂ),<0><<0(t,\/))
= limsup max{d (¢ (t,x),(t,x)),d(e(t,y),¢(t,y')}=0

t—oo

Consequently, ¢ x ¢ is Li-Yorke chaotic.
Assume ¢@x¢@ is Li-Yorke chaotic.Then there exists an uncountable set D < X x X such that
for any pair (u,v) e DxD with g = v then we have

Iirtrlionf ploxp(t, 1), pxp(t,v))=0 Iirtn_)sooup pleoxp(t, 1), pxp(t,v))>0

We definethemap 7,:D—> X as z(Xx,y)=X, 7,:D->Y as z,(x,y)=Y,

for any (x,y)eD .As D is an uncountable set, z,(D) or =,(D) is an uncountable
set.Generally,we suppose 7,(D) to be an uncountable set. Letx, x" € z,;(D) ,and x = X’ then exists
y € 7,(D) ,such that (x,y),(x',y") e D.Hence we have

liminf p(pxp(t,(x,Y)).0xo(t.(x,y)) =liminf d(p(t,x),p(t, X)) =0
Iirpswup ploxp(t,(x,y)). oxp(t,(x,y))) = Iirpiupd(¢(t, x),o(t,x')) >0
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Therefore ¢ is Li-Yorke chaotic.This completes the proof.
Theorem 3.4 Let (X,d) be a compact metric space , ¢:RxX — X be a continuous
flow.Then ¢ is distributional chaotic if and only if ¢@x¢ is distributional chaotic.
Proof Assume ¢ is distributional chaotic.Then there exists an uncountable set D < X such
that for any pair (x,y)e DxD with x=y,
F(p,x,y,p)=0,forsome p>0; E((p, X,y,8)=1,forany s>0.
Let D'=DxD then D'c XxX isanuncountable set. Let x=(x,y),
v=(x,y)e D’ andu#v.Noting that x,y,x,y'eD,x=x",0r y=y',
then we have ifx = x",and y=Yy’,
E(p,x, X', p,)=0,forsome p,>0; F(p, %, x',s)=1forany s>0.
E(p,y,Y', p,)=0,forsome p,>0; E(go, y,y',s)=1forany s>0.
If x=x",and y=yY',
E(p,x,x', p,)=0,for some p,>0; E(go, x,x,s)=1,forany s>0.
E(p,y,Y', p,)=0,forsome p,>0; F(p,y,y',s)=0,forany s>0.
Ifx=x",and y=Yy’,
E(p,x, X', p,)=0,forsome p,>0; E((p, x,x',s)=0,forany s>0.
F(p.y,y,p,) =0 forsome p,>0; F(p,y,Y,s)=1forany s>0.
Let p=max{p,, p,},then
&(oxo,uv, p) <& (o XX, p)+&(0. Y, Y, P,)

and further
F(pxo,u,v,p)=F(p,x,X,p)+F(p,y,y,p,)=0+0=0

Obviously, F(px ¢, u,v,s) =1, forany s>0.

Therefore @x¢ is distributional chaotic.

Suppose @x ¢ is distributional chaotic.Then there exists an uncountable set D < X x X such
that for any pair (u,v)e DxD with u=v,

F(px@,u,v,p)=0, forsome p>0; F(pxg,uv,s)=1,forany s>0.

We definethemap 7,:D—> X as z(x,y)=X,7,:D->Y as z,(x,y)=Y,

for any (x,y)eD . As D is an uncountable set, z,(D) or z,(D) is an uncountable
set.Generally,we suppose 7z,(D) to be an uncountable set.

Let x,x'er(D),and x = x'.thenexists ye z,(D),suchthat (x,y),(x,y’)

e D ,sowe have g (pxo,u,v,p)=2¢/(p X X, p).Hence it is easy to show that

F(p,x,x,p)=0, F(p,xx,s)=1,Vs>0.
Consequently, ¢ is distributional chaotic.This completes the proof.

Summary

In this paper ,we prove that ¢ is Li-Yorke chaotic if and only if ¢x¢ is Li-Yorke chaotic; ¢
is distributional chaotic if and only if @x¢ is distributional chaotic.
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